The Effects of MgCl₂ and CaCl₂ on Plain and Fly Ash Pavement Concretes

Phase 1

J. Jain, J.Olek and A. Janusz Purdue University T. Nantung, INDOT

Joint Transportation Research Program (JTRP) SPR-3091 December, 2010

Objectives

- Investigate the effects of de-icing/anti-icing chemicals on durability of concrete
- Evaluate the chemical interactions of de-icing chemicals with concrete matrix and aggregates
- Compare the effects of de-icing chemicals on plain (Type I) and fly ash (FA20) concretes

Wetting & Drying (W/D) – Previous studies

Previous studies utilized wide ranges of concentrations of deicers, temperature and length of exposure cycles; some combinations resulting in unrealistic conditions

Researchers	Wetting		Drying		Deicing Solutions		
	Temp °C	time in hours	Temp °C	time in hours	NaCl	CaCl ₂	MgCl ₂
Wang et al. [1]	4	15	23	9	26.50%	37.90%	-
Darwin et al. [2]	23	96	38	72	6.04 and 1.06 molal	6.04 and 1.06 molal	6.04 and 1.06 molal
Lee et al. [3]	58	132	58	24	0.75 M	0.75 M	0.75 M
Cody et al. [4]	60	132	60 or 90	24	3/ 0.75 M	3/ 0.75 M	3/ 0.75 M
Current study	4	16±1	23	8±1	23.3 %	28%	25 %

No prior investigations as to how accelerated testing affects the wetting and drying (or freezing and thawing) processes and thus the interaction of de-icer solution with concrete

Freezing & Thawing (F/T) – Previous studies

	Fre	ezing	Thawing		Deicing Solutions		
Researchers	Temp °C	Time hours	Temp °C	Time hours	NaCl	CaCl₂	MgCl ₂
Wang et al. [1]	-20	15	Warm water	9	13.3	9.5	
Kozikowski et al. [5]	-18	16-18	23	6-8	4 & 30 %		30%
Lee et al. [3]	-4	24	58	132	0.75 M	0.75 M	0.75 M
Cody et al. [4]	0 or -70		25		3M/0.75 M	3M / 0.75 M	3M / 0.75 M
Current study	-20	12	20	12	14%	17%	15%

Similarly large variations in F/T parameters

Experimental program

- The durability of the two concretes exposed to
 - Wetting and drying (W/D) cycles
 - Freeze-thaw (F/T) cycles
- Periodic monitoring of mass loss/ length changes and resonance frequencies of specimens exposed to W/D and F/T cycles
- Determination of compressive strength of companion specimens

Type I specimens after W/D cycles in 25% MgCl₂ & 28% CaCl₂ solutions

Type I specimens after 168 W/D cycles in 28% CaCl₂ solution

Fly Ash specimens after W/D cycles in 25% MgCl₂ & 28% CaCl₂ solution

Type I & Fly Ash specimens after 168 W/D cycles in 28% CaCl₂ solution

Type I

The use of fly ash helps reduce the speed of deterioration.

FA20

Type I & Fly Ash specimens after 275 W/D cycles in 25% MgCl₂ solution

Mass Changes for W/D exposure (all solutions)

Mass Changes W/D exposure regime (MgCl₂ and CaCl₂ solutions)

Relative Dynamic Modulus of Elasticity (RDME) for W/D exposure

Relative Dynamic Modulus of Elasticity (RDME) for W/D exposure

F/T exposure - Type I Specimens

166 F/T cycles in 15% MgCl₂ solution

166 F/T cycles in 17% CaCl₂ solution

F/T Exposure - Type I & Fly Ash Specimens

Type I & Fly Ash specimens after 166 F/T cycles in 15% MgCl₂ solution

Type I & Fly Ash specimens after 166 F/T cycles in 17% CaCl₂ solution

Mass Changes for F/T exposure

Mass Changes for F/T exposure

Relative Dynamic Modulus of Elasticity (RDME) for F/T exposure

Relative Dynamic Modulus of Elasticity (RDME) for F/T exposure

Microstructure-W/D Cycles

In CaCl₂ solution

In MgCl₂ solution

Conclusions

- External signs of deterioration were more extensive in Type I specimens exposed to 168 W/D cycles in CaCl₂ solution than those observed in specimens exposed to 210 W/D cycles in MgCl₂ solution (despite 25% longer exposure).
- Initial signs of distress were observed in the MgCl₂ exposed specimens after 275 W/D cycles but the overall damage was still much less than that observed in the CaCl₂ specimens after 168 W/D cycles (despite 60% longer exposure).
- Surface deterioration of Type I specimens in the MgCl₂ solution for 350 W/D cycles was observed to be comparable to the surface deterioration of the equivalent specimens in the CaCl₂ for 168 W/D cycles. This indicates the specimens in the CaCl₂ were deteriorating at the rate at least twice as fast as the specimens in the MgCl₂ solution.

Conclusions

- The RDME values of the specimens exposed to MgCl₂ stayed at the 100% level for almost 200 W/D cycles as opposed to about 30 cycles for specimens exposed to the CaCl₂. This indicates that the CaCl₂ solutions accelerate the deterioration rate to approximately 3 times that of the MgCl₂ solutions.
- The fly ash concrete demonstrates better performance compared with the Type I specimens.